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1 The Kondo Effect and RG

It is an experimentally known fact that classes of metals with magnetic impurities exhibit a minimum
resistivity at a certain temperature TK , below which the resistivity begins to rise. The existence of this
minimum is, on its face, paradoxical, as standard phonon theory in metals predicts that the resistivity
should be a monotonically increasing function of temperature. Moreover, this minimum temperature
does not depend on the concentration of the impurities, so it is not due to electronic correlation between
neighboring impurities, but must rather be due to the scattering effect between the electrons and the
magnetic impurity. Kondo proposed a model in 1964 that reproduced this effect, and so it has since been
known as the Kondo effect. It can be described be the following Hamiltonian:

H =
∑
k,α

ψ†
α
(k)ψα(k)ε(k) + λ~S ·

∑
k,k′

ψ†
α
(k)

~σβα
2
ψβ(k) (1)

The simple Drude model of conductance gives a resistivity in the presence of a single impurity as:

ρ(T ) =
m

ne2τDrude
=

m

ne2
Γ(εF ).

Here τDrude is the single-particle transport life-time. It is related to the inverse of the scattering rate Γ for
an electron at the fermi energy εF . Since the scattering rate is proportional to angular integrate matrix
element of the T matrix, we see that the scattering matrix determines the resistivity.

The Kondo effect comes from the renormalization of the propagator. The contributing diagrams
involve spin flips, as is explained in detail in [1]. The contributing Feynman diagrams are below.

Here, τ is the opposite spin from σ. From integrating out the high-energy modes, we obtain a beta
function of β(λ) = −νλ2 where ν is the density of states. This gives us that λ runs as

λeff =
λ0

log(T/TK)
(2)

Here D is the UV cutoff for the bandwidth: |k− kF | < D. This gives TK to be on the order of De−1/νλ0 .
This calculation was done by Kondo, giving the correct temperature at which perturbation theory breaks
down. To be able to describe the full non-interacting picture, we need the full mechanics of Wilson’s
numerical renormalization scheme. However, from the more modern perspective of understanding field
theories as flows from UV to IR fixed points, we can develop our understanding of the Kondo problem
(and even calculate relvant low-temperature quantities) in terms of the 2D conformal field theory at
T = 0.
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2 Reduction to 1+1 Dimensions

The following 4 sections will summarize the analysis and results of [2]. Note that near the Fermi energy
ε(k) ≈ vF (k−kF ). Since we are looking at only s-wave scattering, consider the equivalent one dimensional
problem.

ψ(k)→ 1√
4πk

ψ0(k)

H0 = vF

∫
dk(k − kF )ψ†0(k)ψ0(k)

= vF

∫
dkkψ†0(k + kF )ψ0(k + kF )

Hint = λvF ν

∫
dkdk′ψ†0(k)

~σ

2
ψ0(k)

We can then write ψL =
∫
dkeikrψ0(k + kF ) for an incoming wave and ψR =

∫
dke−ikrψ0(k + kF ) for an

outgoing wave. These sum together to give the full position space Fourier transform of ψ. We then get:

H0 =
vF
2π

∫ ∞
0

dr

(
ψ†L(r)i

∂

∂r
ψL(r)− ψ†R(r)i

∂

∂r
ψR(r)

)
Hint = λvF ν

∫
dkdk′ψ†0(k)

~σ

2
ψ0(k) = vF νλ ~S · ψ†(0)

~σ

2
ψ(0)

(3)

Since ψL,R(r, t) are defined only for r positive, we can define

ψL(z = τ + ix) = ψL(x, τ)

ψR(z∗ = τ − ix) = ψR(x, τ).
(4)

for τ imaginary time. Further, because these must agree at x = 0, we can write everything in terms of
ψL with ψL(−x, τ) := ψR(x, τ). Then we can write

H0 =
vf
2π
ψ†Li

d

dx
ψL. (5)

This 1+1D free fermion theory is in fact conformally-invariant (i.e. a CFT). The two-point functions can
easily be computed as:

〈ψL(z)ψ†L(0)〉 =
1

vF

1

z
, 〈ψR(z∗)ψ†R(0)〉 =

1

vF

1

z∗

We will set vF = 1 and rescale νλ → λ for future discussion. We can also now write the full 1+1D
Hamiltonian as a lattice model as:

H = t
∑
i

(ψ†iψi+1 + ψ†i+1ψi) + λ ~S · ψ†0
~σ

2
ψ0 (6)

At λ = 0, this free fermion model has even and odd parity wave functions going as cos kx and sin kx,
respectively. On the other hand, if we make the interaction term large λ � t, the electron at the origin
will want to do everything possible to ensure that the state at the origin is a singlet. Thus, the ground
state will be a singlet at 0, and fluctuations away from 0 are allowed, so long as particles and holes do
not interfere with the singlet state at the origin.
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3 The role of CFT

The CFT side of the picture emerges from the free electron model by defining the current density operator
in terms of the normal order of the ψ field.

J(x− t) = :ψ†LψL :≡ lim
ε→0

(
ψL(x)ψL(x+ ε)− 〈0|ψ†L(x)ψL(x+ ε) |0〉

)
. (7)

This in turn satisfies an OPE:

: J(x)J(x+ ε) := 2i :ψ†(x)i
d

dx
ψ(x) : (8)

But this is just the free theory Hamiltonian, so (up to an infinite constant), we get:

H =
1

4π
J2. (9)

It is here, in this surprisingly trivial setting, that we begin to see an affine algebra structure begin to
emerge.

If we add spin indices to ψ, we get two current densities, corresponding to charge and spin:

J =:ψ†
α
ψα :, ~J =:ψ†

α~σ
β
α

ψ β

:

:J2 : =:ψ†
α
ψαψ

†βψβ : +2iψ†
α d

dx
ψα

: ~J2 : = −3

4
:ψ†

α
ψαψ

†βψβ : +
3i

2
ψ†

α d

dx
ψα

(10)

These can be directly seen to satisfy commutation relations:

[J(x), J(y)] = 4πi
d

dx
δ(x− y)

[Ja(x), Jb(y)] = 2πiεabcJc(x)δ(x− y) + πiδab
d

dx
δ(x− y)

[J(x), ~J(y)] = 0

⇒ H =
1

8π
J2︸ ︷︷ ︸
Hc

+
1

6π
~J2︸ ︷︷ ︸

Hs

.

(11)

We thus can express the Hamiltonian in terms of two commuting conserved charges. This is the important
point, as it allows us to decouple the “charge” from the “spin” degrees of freedom. We write H = Hc+Hs.

In terms of Fourier modes Jan ≡ 1
2π

∫ l
−l e

inπx/lJa(x), this gives:

[Jan, J
b
m] = iεabcJcn+m +

1

2
nδn,−m. (12)

This is the affine SU(2) Kac-Moody algebra of level1 k = 1, denoted ŜU(2)1. Note that this gives

Hs =
π

3l

∞∑
n=−∞

: ~J−n ~Jn : . (13)

1For some reason some literature calls k the central charge, which is not consistent with other more usual definitions of
the true Virasoro central charge c.
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4 Boundary Conditions and Strong-Weak Fixed Points

In the last section, we expressed the free fermion theory in terms of a SU(2) Kac-Moody algebra at k = 1.
The boundary conditions on the free theory at x = ±l are that ψ(l) = −ψ(−l). This gives a spectrum

k =
π

l

(
(n↑ +

1

2
) + (n↓ +

1

2
)

)
(14)

For a charge Q = Q↑ +Q↓ state we get an energy of:

E =
πV

l
[
1

2
Q2
↑ +

1

2
Q↓ +

∞∑
m=−∞

m(n↑m + n↓m)], (15)

where the last term corresponds to excitations gained from raising nm electrons up m levels, and is zero
for the ground state. The boundary conditions determine the spectrum and couple the Q and Sz quantum
numbers so that

Q = 2Sz mod 2. (16)

This means that, in terms of representations of the KM algebra, the states must be obtained by applying
appropriate raising operators (Ja−n) to the ground states that are either even charge integer spin or odd

charge half-integer spin. The total Hilbert space is the sum of two irreducible representations of ŜU(2)1
(known as “conformal towers” in the literature):

(even, integer)⊕ (odd,half-integer).

It is quick to see that if we have the opposite boundary conditions, ψ(l) = ψ(−l), corresponding to the
phase-shifted case at the interacting fixed point, we’d get the reverse boundary conditions:

(even,half-integer)⊕ (odd, integer).

The fact that the interacting fixed point can be written as a free fermion theory with different boundary
conditions leads one to consider whether we can obtain another Kac-Moody algebra in the perturbed
hamiltonian:

H = ψ†
α
i
d

dx
ψα + λψ†

α~σ
β
α

2
ψβ · ~S δ(x) =

1

8π
J2 +

1

6π
~J2 + λ ~J · ~S δ(x) (17)

This is just a perturbation of the spin Hamiltonian, which can be written in Fourier space as:

Hs =
πV

l

( ∞∑
n=−∞

(
1

3
~J−n · ~Jn + λ ~Jn · ~S

))

It looks like at λ = 2/3, this factors into (up to an irrelevant constant):

H =
πV

3l

∞∑
n=−∞

( ~J−n + ~S) · ( ~Jn + ~S)

Defining ~Jn = ~Jn + ~S, we get an algebra satisfying the exact same commutation relations, but with ~J
instead of ~J . This is again a KM algebra, meaning it is a CFT which we posit describes the strong-coupling
fixed point. Note that because the total spin operator has been shifted by a factor of one half, we have
changed “integer” → “half-integer” in the conformal towers above, consistent with changing boundary
conditions.

From here, we can use the correlation functions in this CFT to calculate low temperature quantities
as well.
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5 Multi-Channel Kondo Effect

If we have multiple “channels” for the different electrons (e.g. different f and d shell orbitals), the
Hamiltonian could be written initially as the following form:

H =
∑
~k,α,i

ε(k)ψ†k
α,i
ψk,α,i + λ~S ·

∑
~k,~k′,α,β,i

ψ†~k
α,i~σβα

2
ψ~k′,β,i (18)

where i runs from 1 → k, and the model has SU(k) symmetry. We will here let the impurity have an
arbitrary spin S, not necessarily equal to 1/2.

It will now be interesting to see whether these multi-channel results could be recreated using the
Kondo effect in quantum dots. In order to make accurate predictions, we will need to understand the
symmetry breaking of the SU(k). For an initial experimental realization, see [3].

The previous discussion of KM algebras immediately generalizes. We now have to introduce an addi-
tional flavor current JA = ψ with commutation relations for the Fourier modes given as:

[JAn , J
B
M ] = ifABCJCn+m + nδABn,−m (19)

where fABC are the structure constants for SU(k). This is the KM algebra for SU(k) with central charge
2. The level of the SU(2) spin algebra gets modified (because there are now k flavors) and becomes k
instead of 1. The central charge2 charge of such an algebra is known to be:

cG,k =
k dimG

h̃G + k
(20)

Where h̃G is the dual Coxeter number which is k for SU(k). A quick check gives that the total central
charge of the CFT is k, consistent with there being 2k species of free fermions. The free Hamiltonian is
quickly calculated to be:

H =
1

8πk
J2 +

1

2π(k + 2)
~J2 +

1

2π(k + 2)
(JA)2. (21)

As before, we now add the Kondo term to the Hamiltonian of the free theory. It only modifies the
spin part as:

Hs =
1

2π(k + 2)
~J2 + λ ~J · ~S δ(x). (22)

Again, we see a special value of λ = 2
2+k where this factors.

The conformal towers of ŜU(2)k have been worked out to be one of k + 1 possible irreps labeled
by a lowest energy (highest weight) state s = 0, 1/2, 1, . . . , k/2 from which the Hilbert space is again
obtained by acting on it by ~J−n. To understand which irreps appear, we need to know their relationship
to boundary conditions.

Here, it is necessary to understand the general relationship between the constrains of conformally-
invariant boundary conditions and the fusion rules of WZW-type models involving KM algebras. The
essential point is this: The low-temperature fixed point of the strongly-interacting theory with a spin s at
the center is given by fusion of the free theory with a spin s primary for s ≤ k/2 and a spin k/2 primary
for s > k/2. This can be understood as tensoring with the module for that primary.

2It is interesting to note that this is proportional to the specific heat. I will investigate this further at a later point.
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6 Relationship to Quantum Dots

Quantum dots allow for a tunable Kondo effect [4], making them an excellent candidate to build ex-
perimental realizations of the physics discussed above. In the quantum dot case, the magnetic impurity
given by coulomb blockaded electrons in a quantum dot makes it so that the conductance rather than the
resistivity is proportional to scattering. We have the following figures from [5], describing the effective
circuit element of the quantum dot and the conductance curve:

At large temperatures, the dot has nearly a continuum of states, and the total conductivity is given by
the reciprocal sum of the of the conductivities of the left and right contacts of the dot:

1

G∞
=

1

GL
+

1

GR
(23)

Once T goes below the scale of the coulomb charging energy but is still larger than the level spacing in
the quantum dot, δE � T � EC fermi statistics become relevant for the conductivity, and we get:

G = G∞
EC(N −N∗)/T

sinh 2EC(N −N∗)/T
(24)

Here N is a dimensionless parameter proportional to the gate voltage CgVg/e. For N a half integer, we
have a coulomb blockade peak at N = N∗.

At lower temperatures, still above δE , virtual transitions dominate, and we observe the increase of
elastic co-tunneling. Below the level spacing δE, however, the single unpaired electron on the dot (placed
there via appropriate choice of gate voltage) can no longer scatter on the other spins in the dot. This
single unpaired s = 1/2 spin gives rise to the Kondo effect. As before, at T = 0 it will be completely
screened, forming a singlet state.

The 1D picture developed in Section 2 applies just as well to this quantum dot circuit. It is interesting
to consider experimental realizations of (possibly broken) flavor symmetry arising from multiple channels.
It is also worth thinking about possibly forming a higher spin (e.g. triplet) state in a double quantum
dot (usually taken to be two quantum dots in series). Further calculations can explore different circuit
configurations of quantum dots.

It is worthwhile to investigate how these KM CFTs might generalize to characterize systems incorpo-
rating spin-orbit coupling.
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